Part 3 – SDP Programmer’s Manual

           30 June 2008


NYSDOT Task 2.A Extension
Transit Schedule Data Exchange Architecture (TSDEA)

SDP Guidance Documentation
PART 3 – SDP Programmer’s Guide
Version 1.0

SDP Application:  CSV2XML
Convert SDP Comma Separated Value Files to XML 

Set Up and User’s Manual

Table of Contents   
11
Introduction


12
Software Installation


23
Operation


23.1
Tutorial:  Data Structure and Data Content


23.1.1
Data Model


33.1.2
Data File Formats and Preparation


63.2
Data Files


63.2.1
Set Up the SDP Directory Structure


73.2.2
List of Csv2Xml Application Data Input Files


73.2.3
List of Csv2Xml Application Data Output Files


73.3
Application Execution


83.4
Initialization Files


83.4.1
File Notation


83.4.2
File:  sdp_process_”agency”.ini


93.4.3
File:  “agency”.ini


114
Maintenance


114.1
Schema Extension and Update


114.2
Adding Multiple Schedule Versions


125
Appendix A:  Initialization Files


156
Appendix B:  CSV File Formats


207
Appendix C:  Software Module Descriptions




1 Introduction

The Transit Schedule Data Exchange Architecture (TSDEA) project describes the exchange requirements for schedule and related data.  These data requirements are incorporated into Schedule Data Profile (SDP) reference data model and implemented into the SDP XML Schema.  

This User’s Manual describes how to install and use the SDP application, CSV2XML, or Convert SDP Comma Separated Value Files to XML Schema Application.  The appendices describe the design details of the application software.  

The purpose of the CSV2XML application is to transform a set of predefined comma delimited value (csv) files to a SDP XML Document.  A set of files are generated with valid values (includes data structures, code values, time types, etc.) and integrity checks as defined by the SDP XML Schema.  The application merely reads and formats the data into the specified organization, delimited by the appropriate tags.  The application performs some error checks, but only insofar as it must match related elements (i.e., child elements to their parent counterparts).  

The SDP CSV format allows agencies to store their schedule data in a relational database like MS SQL Server, Oracle and MS Access.    

The SDP reference data model may be mapped to a relational data model (the CSV format, for example) or the XML schema representation.

Given the number of systems using relational databases, the purpose of the CSV2XML is to convert SDP relational tables to a formatted, valid XML schema document, suitable for exchange with other agencies.  The SDP XML format provides a comment export format for schedule data.  Additionally, the XML formats may be transformed into the CSV (see SDP Application XML2CSV User’s Manual).  
2 Software Installation

The csv2xml is an application written in PHP and runs on any platform that operates a PHP interpreter.  Optionally, the csv2xml may be integrated with an Apache web server. The path and file names in the application may need to be changed if the operating system changes (for example, on Linux, although most of these paths are configurable).  The SDP schema version that is used is version 1_0.
	System
	Version

	SDP XML Schema
	V1_0

	PHP (www.php.org)
	5.0.2 

	MS Windows
	Windows XP


Prerequisites:  A PHP interpreter and apache web server should be installed and the Apache web server started before you can run the application. 
The attached CD contains the source code, templates for the two initialization files (with extension *.ini), templates for the data files (with extension *.csv), and sample initialization and data files.  This User Manual and License Agreement are also included on the CD.
CSV2XML Application Software Module Files:

· Check_SDPcsv.php: Performs referential integrity checks of primary keys in parent and child relation CSV files.
· Main_sdp_csv_to_xml.php:  contains the main program for the application
CSV2XML Initialization Files:
· sdp_process_”agency”.ini:  initialization file with schema and schedule version, as well as, the name of the second initialization file, where “agency” may be replaced by an agency-specific name, such as libus, rtif, stif, mnr, lirr, mtabus, etc.

· sdp_files_“agency”.ini:  initialization file with data files and their path information, where “agency” may be replaced by an agency-specific name such as libus, rtif.  In the case of NYCT RTIF and STIF files, each route/line is given a separate .ini file, for example sdp_files_stif.bx0001.ini
CSV2XML Batch Files for Application Execution:

· csv2xml_”agency”.bat:  executes the software modules of the CSV2XML application, where “agency” may be replaced by an agency-specific name, such as libus, rtif, stif, mnr, lirr, mtabus, etc.

Software module descriptions are included in Appendix C.

3 Operation

Several steps must be taken prior to execution of the application.  Primarily, the application requires preparation of the data files prior to operation.  Once the data files are created, the initialization files should be completed and inserted into the appropriate directory.  Then you are ready to operate the application.

3.1 Tutorial:  Data Structure and Data Content

There are over 40 data files that correspond to the SDP Concept Data Model and are mapped to parent and child elements of the SDP XML Schema.  This section describes how the data should be organized and inserted into the data files.  It also provides a brief description of how the data files fit together into a logical model that is derived from the SDP conceptual model.
3.1.1 Data Model

The data files are derived from a logical entity-relationship diagram of the SDP Concept Data Model.  They differ from the reference model because they include related or foreign keys.  They are only “logical” because they do not conform to the physical constraints of a database management system, referential integrity is not enforced, and data types are not strictly enforced.  For that reason, the data should conform to the SDP data requirements prior to insertion into the data file formats. 

3.1.2 Data File Formats and Preparation

The data files are formatted as a set of comma delimited data.  The first row is the header row, populated with data in subsequent rows.  The data should correspond to the header information and conform to the semantic requirements described in the Developer Guidance and Template documents.

3.1.2.1 First Row and Header Information

A header row is inserted as the first row in every data file.  The spelling and capitalization should reflect the SDP Schema tag names.  A data file may be viewed as a table. The first row contains the column names, and subsequent rows contain the content information, the commas separate one cell from another.  For example, the ‘route’ table includes the following columns:

· routeID, 
· routeName, 
· mode, 
· publicRouteName, 
· publicRouteNumber, 
· routeDescription, 
· routeBeginDate, 
· routeEndDate, 
· effectiveDate, 
· endDate
The first row appears like the comma delimited string inserted between the brackets:

[routeID, routeName, mode, publicRouteName, publicRouteNumber, routeDescription, routeBeginDate, routeEndDate, effectiveDate, endDate]

The header fields are documented exactly as they appear in the SDP schema.  Care is taken to ensure that spelling and capitalization are consistent with the schema.  The last two elements:  effectiveDate and endDate are attributes of the Route element.

The application may not check for optional and mandatory schema elements.  Generally, the csv2xml application processes and tags all the data that is provided in a table/file when it generates the SDP document.  This condition extends to all the columns in a table.  To that end, optional elements that are not supported with native data may be left out of the data files.  On the other hand, the csv2xml tool does check for mandatory elements that are data files such ‘route’, ‘revision’, ‘pattern’, ‘location’, and ‘trip’. The two approaches to handling optional elements are discussed below.

Optional Elements in a Data File
If an optional element or attribute is not included in the table, for example if routeName, effectiveDate and endDate are not supported by your native data, then the header fields should be left out.  The first row should be inserted as follows:

[routeID, mode, publicRouteName, publicRouteNumber, routeDescription, routeBeginDate, routeEndDate]

Notice that the tag names and associated commas are removed from the header row.  The data should correspond to the header row, matching the column header.  You may check your work using a spreadsheet program such as MS Excel.  A csv file (using the extension *.csv) may be opened as a table in an off-the-shelf spreadsheet application. 

Optional Elements as a Data File

An optional parent element such as OrganizationUnit or Depot does not need to be completed.  The application checks the <<agency>>.ini file for the file tag.  If it is not included, then the module assumes that the data file should not be processed and included in the SDP document.

3.1.2.2 Data Content

There are only a few special requirements for managing the data file content.  These requirements are related to how to reference rows in related data files, and character restrictions. 

Related Keys/Identifiers

Data files that contain elements that are children of parent elements must include related or foreign keys. In some cases, the SDP schema supports these fields.  However, if an element is embedded as a child in a parent element such as trip time is included in trip, then it inherits its parent identifier, and the SDP does not explicitly include that data in the document.  This is the major difference between the relational and schema models.  

The logical data model depicted in Figure shows the related keys.  These keys are later stripped out when the data is processed and generated into the SDP format.  The existence of related keys is checked for child elements of parent elements, for example Trip Time is a child element of Trip, Route Direction is a child element of Route.  However, there are no checks to entities with a logical relationship to another entity, such as Trip to Route, or Trip Time to Location.  There is another application that may be used to check those relationships (see CheckSDPcsv.php).

The logical relationships that are checked and related keys that are stripped away are listed in Table 1.  Table 1 includes a column that lists the file tags, file names and related keys that are matched and stripped away.  In addition, the “√” indicates that the data file has been implemented (and is processed) in the current version of the software.

    Table 1:  Supported Data Files and Related Keys
	Included?
	File Tag
	File Name
	Related Key (matched & stripped from file)

	√
	ac 
	sdp_AC.csv
	agencyID

	√
	agency 
	sdp_agency.csv
	

	√
	agencyAddress 
	sdp_AgencyAddress.csv
	agencyID

	√
	amenity 
	sdp_amenity.csv
	

	
	clusterLocation 
	sdp_ClusterLocations.csv
	transferClusterName

	
	connectionSeg 
	sdp_ConnectionSegment.csv
	transferClusterName

	√
	dayType
	sdp_DayType.csv
	dayType

	√
	depot 
	sdp_Depot.csv
	

	√
	eventConnection
	sdp_EventConnection.csv
	eventConnectionID

	√
	eventList 
	sdp_EventList.csv
	routeID, patternID

	√
	location 
	sdp_Location.csv
	

	√
	note 
	sdp_Note.csv
	

	√
	noteTripAssoc 
	sdp_NoteTripAssociation.csv
	tripID

	
	noteTimeAssoc 
	sdp_NoteTimeAssociation.csv
	tripID, tripTime

	√
	organization 
	sdp_OrganizationUnit.csv
	

	√
	passAccessComp 
	sdp_PassAccessComp.csv
	

	√
	pattern 
	sdp_Pattern.csv
	

	
	plantComp 
	sdp_PlantComponent.csv
	transitfacilityID,

	√
	portal 
	sdp_Portal.csv
	

	
	ptEventType 
	sdp_PtEventType.csv
	patternID, seqNo

	√
	relativeLocation 
	sdp_RelLocation.csv
	locationID

	√
	route 
	sdp_Route.csv
	

	√
	rtDirection 
	sdp_RouteDir.csv
	routeID

	
	routeGroup 
	sdp_RouteGrouping.csv
	

	√
	rtDepotVersion 
	sdp_RtDepotVersion.csv
	revisionNumber

	
	rtGroupPattern 
	sdp_RtGroupingPattern.csv
	routeGroupingID

	
	rtGroupTrip 
	sdp_RtGroupingTrip.csv
	routeGroupingID

	√
	revision 
	sdp_SchedRevision.csv
	scheduleVersionID

	
	calendar 
	sdp_ScheduleCalendarDate.csv
	

	√
	schedVersion 
	sdp_SchedVersion.csv
	These fields are currently located in the sdp_process.ini file

	
	status 
	sdp_Status.csv
	transitfacilityID, plantCompID,

	
	stopAdd 
	sdp_StopAddress.csv
	stopID

	
	stopTrack 
	sdp_StopTrackAssoc.csv
	stopID

	√
	timepoint 
	sdp_Timepoint.csv
	

	√
	track 
	sdp_Track.csv
	

	√
	transferCluster 
	sdp_TransferCluster.csv
	

	√
	facility 
	sdp_TransitFacility.csv
	

	√
	stop 
	sdp_TransitStop.csv
	

	√
	trip 
	sdp_Trip.csv
	

	
	tripEventType 
	sdp_TripEventType.csv (alternative)
	tripID, tripTime

	
	tripTime 
	sdp_TripTime.csv (alternative)
	routeID, tripID

	√
	tripTimes 
	sdp_TripTimes.csv
	routeID, tripID


Several of the files are not yet included in the application (because native data is not available to test these elements). 

Character Restrictions

Since this is a comma delimited file, the use of commas in the content of the file should be reserved for the delimiter.  Use of a comma in any other capacity will cause the program to fail.  In addition, the Guidance document also cautions against the use of certain characters that conflict with html special characters such as “&” and “#”.  Prior to executing this program all html special characters should be replaced.

3.2 Data Files
3.2.1 Set Up the SDP Directory Structure

The figure below shows where to install the SDP application software modules and native data.  You may choose any SDP root path (directory).  We have labeled this SDP root as $SDP in the figure below and use this label in the remainder the user’s manual.

All of the batch files and initialization files use relative paths.

If you are copying files from the CD, the directory structure is set up as described in the figure.

[image: image1.emf]SDP Application Csv2Xml Directory Structure

SDP_processing

$SDP

SDP .csv & .xml files 

- Check_SDPcsv.php

- Main_sdp_csv_to_xml.php

- sdp_process_”agency”.ini

- sdp_files_”agency”.ini

- “agency”.ini

- csv2xml_”agency”..bat

- Where “agency” = LIBus, RTIF, …

etc.

- In the case of RTIF and STIF,

“agency” is agency plus route/line 

string, e.g., stif.bx0001, rtif.a

$SDP is a directory of your choosing.

Application Software 

Modules

Application Input 

and Output Files

SDP_data

RTIF STIF MNR LIRR MTABus CoachUSA LIBus


The software modules, initialization, and batch files are located in the SDP_processing sub-directory of the $SDP directory.  We will use a forward-slash notation to indicate sub-directory relationships of directory tree.  For example, $SDP/SDP_processing.  

SDP data files, both the CSV and XML format are read and written to an agency-specific directory of $SDP/SDP_data/, for example, $SDP/SDP_data/LIBus for Long Island Bus, and $SDP/SDP_data/RTIF for New York City Transit Rail files.
3.2.2 List of Csv2Xml Application Data Input Files

The Csv2Xml application reads CSV data from an agency-specific sub-directory of $SDP/SDP_data/”agency”.  The list of files read depends on the agency whether the agency provides bus, commuter rail, subway, etc. service.  The list of files using the LIBus as an example, is listed below: 
· sdp_agency.csv

· sdp_direction.csv

· sdp_location.csv

· sdp_Note.csv

· sdp_NoteTimeAssoc.csv

· sdp_NoteTripAssoc.csv

· sdp_pattern.csv

· sdp_patternEventList.csv

· sdp_relativeLocation.csv

· sdp_route.csv

· sdp_rtDepotVersion.csv

· sdp_RtDirection.csv

· sdp_scheduleRevision.csv

· sdp_scheduleVersion.csv

· sdp_stop.csv

· sdp_TimeEventType.csv

· sdp_timepoint.csv

· sdp_trips.csv

· sdp_tripTimes.csv

3.2.3 List of Csv2Xml Application Data Output Files

The Csv2Xml application generates a single XML file – here shown with the version identifier 208:
· sdp_LIBus-V-208.xml

3.3 Application Execution

Once the data files and initialization files are completed and placed in their respective directories (ini files in application directory, data files in the path pointed to by the “dir” tag), the application is ready to be executed. 

Each agency has there own batch file to convert CSV to XML.  The csv2xml_”agency”.bat executes the software modules of the CSV2XML application, where “agency” may be replaced by an agency-specific name, such as LIBus, RTIF, STIF, MNR, LIRR, MTABus, etc.  

For LIBus, the name of the batch file is called:  csv2xml_libus.bat.  To launch the batch file for LIBUs, navigate to the $SDP/SDP_Processing directory.  If you are using a graphical interface to navigate to the $SDP/SDP_processing directory, then double-click on the file called csv2xml_libus.bat to start the application.   If using a command-line interface, type csv2xml_libus.bat to start the application.

3.4 Initialization Files
There are two initialization files.  These files contain variable properties that provide enable the user to change data sets and schema document settings.   The sdp_process.ini file is a fixed-named file that is read by the application.  It contains the name of the second file, and is typically called by the agency name.  Users may call the second initialization by any other name.  

3.4.1 File Notation

By PHP convention, the initialization file has certain conventions.  The file extension is “ini”.  A comment is preceded by a semicolon.  Data that is read has a tag followed by an equal sign.  The data is read into an array indexed by its tag name.  As such a file with a line that reads:
sdpName = SDP100 

implies that the array has a field indexed by ‘sdpName’ with the content of “SDP100”.

The application uses certain specified indices to access the values.  The indices for each of the initialization files will be described in Sections 3.4.2 and 3.4.3 below.

3.4.2 File:  sdp_process_”agency”.ini
The following discussion uses the sdp_process_libus.ini file as an example.  The sdp_process file contains three sets of tag names.  The three categories include terms used to generate the SDP document name (filename), name of the second configuration file (agencyConfig), and schedule version attributes (attributes).  An example file is included in Appendix A.  All the tags in this file must be included; where noted, values may be optional.  No additional fields should be inserted into this file.
	Tags
	Description

	;filename
	Comment that specifies the namespace of the XML document

	sdpName 
	Name that is inserted into the schema document.

	schemaName 
	The location of and name of the schema document to which these data files conform.  This field is used to allow validation of the XML document.

	
	

	;agencyConfig
	Comment that indicates the tag specifies the second initialization file.

	agency 
	The name of the initialization file.  Typically the agency name.  An organization may change the name to point to specific route depot, revision or schedule versions.

	
	

	;attributes
	Comment that specifies the Schedule Version information that is included in the schema header.  All the tags must be included in the file.  Optional tags do not need to include data.

	scheduleVersionID 
	Mandatory field that specifies the schedule version designation; for example 208 (second quarter of 2008)

	scheduleVersionDescription 
	Optional field that includes a description of the schedule version; for example:  second quarter of 2008

	pickNo 
	Optional field that describes the operator assignment number.  Many transit agencies use their pick number as their schedule version identifier.

	activationDate 
	Mandatory field.  Date the schedule becomes active.  The date is formatted as follows:  yyyy-mm-dd
Where:

yyyy is the four digit year

mm is the two digit month

dd is the two digit day

	deactivationDate 
	Mandatory field.  Date the schedule becomes inactive.  If this date is not known, then the date should be designated as 9999-12-31.

	placementDate 
	Mandatory field.  Date the schedule was generated.  If this date is not known, then the current date (date the XML document is generated) should be used.


3.4.3 File:  “agency”.ini

The agency.ini file describes agency information and the directory path where the data files are located.  Organizations may change file names, although the tags should not be changed.
	Tags (and example data)
	Description

	; agency
	Comment that specifies agency information.  This information is not used.

	effectiveDate = 2007-01-01
	Attribute inserted into the agency element

	endDate = 2007-05-29
	Attribute inserted into the agency element

	agencyID = 200
	Agency identifier assigned by registration

	agencyAcronym = LIBus
	Agency acronym.  This field may be used in the XML document name.

	agencyName = Long Island Bus
	Agency name.

	webAddress = http://www.mta.nyc.ny.us/libus/routes/routes.htm
	Web address for the agency.

	
	

	;data source
	Comment that specifies the path location and file names.

	dir = c:/sdp/LIBus/
	Path to the directory where the csv files are located.  The whole path should be specified, for example c:/sdp/LIBus/.  Some operating systems may have difficulty with the forward slash.  An alternative path name may be specified as c:\\sdp\\LIBus\\.  Linux systems may require an alternative path designation.

	ac 
	Tag used for agency contact file.  Related to agency file.  This tag is not yet supported.

	agency 
	Tag used for agency file.

	agencyAddress 
	Tag used for the agency address. Related to agency file.  This tag is not yet supported.

	amenity 
	Tag used for amenity file.

	clusterLocation 
	Tag used for cluster location file.  Related to TransferCluster file.  This tag is not yet supported.

	connectionSeg
	Tag used for cluster location file.  Related to TransferCluster file.  This tag is not yet supported.

	dayType
	Tag used for day type file. 

	depot 
	Tag used for depot file.  This file is OPTIONAL.

	eventConnection
	Tag used for Event Connection file.  This file is OPTIONAL

	eventList 
	Tag used for transit point events file.  Related to Pattern.  

	location 
	Tag used for the location file.

	note 
	Tag used for the Note file.  This file is OPTIONAL.

	noteTripAssoc 
	Tag used for the note trip association file.  Related to Trip file.  This file is OPTIONAL.

	noteTimeAssoc 
	This tag is not yet supported.

	organization 
	Tag used for OrganizationUnit file.  This file is OPTIONAL.

	passAccessComp 
	This tag is not yet supported.

	pattern 
	Tag used for pattern file.  

	plantComp 
	This tag is not yet supported.

	portal 
	This tag is not yet supported.

	ptEventType 
	This tag is not yet supported.

	relativeLocation 
	Tag used for relative location file.  Related to Location file.  This file is OPTIONAL.

	route 
	Tag used for route file.

	rtDirection 
	Tag used for route direction file.  Related to route file.

	routeGroup 
	This tag is not yet supported.

	rtDepotVersion 
	Tag used for route depot version.  Related to schedule revision file.  This file is OPTIONAL.

	rtGroupPattern 
	This tag is not yet supported.

	rtGroupTrip 
	This tag is not yet supported.

	revision 
	Tag used for schedule revision.  

	calendar 
	This tag is not yet supported.

	schedVersion 
	This tag is not yet supported.  Use sdp_process.ini file instead.

	status 
	This tag is not yet supported.

	stopAdd 
	This tag is not yet supported.

	stopTrack 
	This tag is not yet supported.

	timepoint 
	Tag used for timepoint file.  This file is OPTIONAL.

	track 
	This tag is not yet supported.

	transferCluster 
	Tag used for timepoint file.  This file is OPTIONAL.  Embedded elements are not yet supported.

	facility 
	This tag is not yet supported.

	stop 
	This tag is not yet supported.

	trip 
	Tag used for trip file.  

	tripEventType (alternative)
	This tag is not yet supported.

	tripTime (alternative)
	This tag is not yet supported.  This is an alternative implementation for trip times related to trip.  This alternative includes multiple trip event types and notes (noteTimeAssoc).

	tripTimes 
	Tag used for trip time file.  Related to Trip.  The header row includes a field for tripEventType, although it allows only one tripEventType.


4 Maintenance

As additional functionality and SDP XML Schema updates are issued, the csv2xml application will be updated.  The two program files Main_sdp_csv_to_xml_x.php and sdpConvertModules_x.php will document the program version on the file name.  The Main file will include the schema version which is supported by the application.  It will also state the “include” file that references the sdpConvertModule_version which is invoked.
4.1 Schema Extension and Update

Changes to the Schema will necessitate changes to the template comma delimited files.  These files will be packaged in a zipped file with the version number on the file format.  The names of these files may be changed as long as the name change is reflected in the agency.ini file.  
4.2 Adding Multiple Schedule Versions

Each SDP XML Document by definition contains only one schedule version.  Multiple versions may be generated by developing a directory configuration for storing the comma separated value files.  Each directory should contain only one set of files associated with a single schedule version.  The sdp_process.ini file should be edited to ensure that the resulting SDP XML Documents do not have the same name.  The SDP requirements describes the naming conventions for SDP Documents.
5 Appendix A:  Initialization Files


[image: image2]

[image: image3]
Template for Data Sources
ac = sdp_AC.csv

agency = sdp_agency.csv

agencyAddress = sdp_AgencyAddress.csv

amenity = sdp_amenity.csv

clusterLocation = sdp_ClusterLocations.csv

connectionSeg = sdp_ConnectionSegment.csv

dayType = sdp_DayType.csv

depot = sdp_Depot.csv

eventConnection = sdp_EventConnection.csv

eventList = sdp_EventList.csv

location = sdp_Location.csv

note =
sdp_Note.csv

noteTripAssoc = sdp_NoteTripAssociation.csv

noteTimeAssoc = sdp_NoteTimeAssociation.csv

organization =
sdp_OrganizationUnit.csv

passAccessComp = sdp_PassAccessComp.csv

pattern = sdp_Pattern.csv

plantComp = sdp_PlantComponent.csv

portal = sdp_Portal.csv

ptEventType = sdp_PtEventType.csv

relativeLocation = sdp_RelLocation.csv

route =
sdp_Route.csv

rtDirection = sdp_RouteDir.csv

routeGroup =
sdp_RouteGrouping.csv

rtDepotVersion = sdp_RtDepotVersion.csv

rtGroupPattern = sdp_RtGroupingPattern.csv

rtGroupTrip =
sdp_RtGroupingTrip.csv

revision = sdp_SchedRevision.csv

calendar = sdp_ScheduleCalendarDate.csv

schedVersion = sdp_SchedVersion.csv

status = sdp_Status.csv

stopAdd = sdp_StopAddress.csv

stopTrack = sdp_StopTrackAssoc.csv

timepoint = sdp_Timepoint.csv

track =
sdp_Track.csv

transferCluster = sdp_TransferCluster.csv

facility = sdp_TransitFacility.csv

stop = sdp_TransitStop.csv

trip = sdp_Trip.csv

tripTimes = sdp_TripTimes.csv

6 Appendix B:  CSV File Formats

NI = not implemented;
Bolded filenames and Elements are mandatory
	Label/filename
	Complete Element Template
	Elements Implemented in Current SW Version

	‘ac’

/sdp_AC.csv
	agencyID, contactListID, description, hrsOfOperations, telephone, webAddress
	agencyID, description, hrsOfOperations, telephone, webAddress

	‘agency’
/sdp_agency.csv
	agencyID, agencyAcronym, agencyName, webAddress, headquarterTelephone, serviceAreaDescription, hrsOfOperations, effectiveDate, endDate
	agencyID, agencyAcronym, agencyName, webAddress, hdqtTelephone, hdqtAddress, serviceAreaDescription, hrsOfOperations

	‘agencyAddress’

/sdp_AgencyAddress.csv
	addressID, addressSegID, recordDate, addressNumber, directionPrefix, typePrefix, streetName, typeSuffix, directionSuffix, completeName, unitType, unitDesignation, secondLine, postalCommunity, postalState, postalCode, status
	addressID, addressSegID, recordDate, addressNumber, directionPrefix, typePrefix, streetName, typeSuffix, directionSuffix, completeName, unitType, unitDesignation, secondLine, postalCommunity, postalState, postalCode, addressSegStatus

	‘amenity’
/sdp_amenity.csv
	amentityID, amenityCode, locationID, description, effectiveDate, endDate
	amentityID, amenityCode, locationID, description

	‘clusterLocation’

/sdp_ClusterLocations.csv
	transferClusterName, locationID
	NI

	connectionSeg
/sdp_ConnectionSegment.csv
	transferClusterName, connectionSegID, fromStop, toStop, passengerAccessCode, instructions, distance, units, mapURL, effectiveDate, endDate
	NI

	‘dayType’

/sdp_DayType.csv
	dayType, dayTypeDescription, dayTypeValue, dateTimeBegin, dateTimeEnd, agencyID
	dayType, dayTypeDescription, dayTypeValue, dateTimeBegin, dateTimeEnd, agencyID

	‘depot’
/sdp_Depot.csv
	depotID, depotServiceArea, depotName, mode, transitFacilityID, locationID, effectiveDate, endDate
	depotID, depotServiceArea, depotName, mode, transitFacilityID, locationID

	‘eventConnection’

/sdp_EventConnection.csv
	eventConnectionID, connectionType, fromTripTime, fromTripID, fromRouteID, fromTripName, toTripTime, toTripID, toRouteID, toTripName, transferCost, transferClusterName, locationID
	eventConnectionID, connectionType, fromTripTime, fromTripID, fromRouteID, toTripTime, toTripID, toRouteID, transferCost, transferClusterName, locationID

	‘eventList’
/sdp_EventList.csv
	routeID, patternID, locationID, seqNo, trackNo, stopID, distanceFromOrigin, units, headsignDesc
	routeID, patternID, locationID, seqNo, trackNo, stopID, distanceFromOrigin, headsignDesc
[note: use “units” from agency.ini file]

	‘location’
/sdp_Location.csv
	locationID, featureType, locationDesc, intersection, geometry, streetDirection, longitude, latitude, x_coord, y_coord, county, city, state, zip, communityName, serviceArea, publicLocationDescription, isGeneralized, generalizeLocation, effectiveDate, endDate
	locationID, featureType, locationDesc, intersection, geometry, streetDirection, longitude, latitude, x_coord, y_coord, county, city, state, zip, communityName, serviceArea, publicLocationDescription, isGeneralized, generalizeLocation

	‘note’
/sdp_Note.csv
	noteID, noteText, effectiveDate, endDate
	noteID, noteText

	‘noteTripAssoc’
/sdp_NoteTripAssociation.csv
	routeID, tripID, noteID
	routeID, tripID, noteID

	‘noteTimeAssoc’
/sdp_NoteTimeAssociation.csv
	routeID, tripID, tripTime, noteID
	NI

	‘organization’

/sdp_OrganizationUnit.csv
	organizationUnitID, organizationUnitDescription, effectiveDate, endDate
	organizationUnitID, organizationUnitDescription

	‘passAccessComp’

/sdp_PassAccessComp.csv
	passAccessID, locationID, passengerAccessCode, accessLocationDesc, accessiblityDesc, accessDirectionCode, description, effectiveDate, endDate
	passAccessID, locationID, passengerAccessCode, accessLocationDesc, accessiblityDesc, accessDirectionCode, description

	‘pattern’
/sdp_Pattern.csv
	patternID, patternName, description, routeID, routeDirection, origin, destination, patternType, effectiveDate, endDate
	patternID, patternName, description, routeID, routeDirection, origin, destination, patternType

	‘plantComp’
/sdp_PlantComponent.csv
	transitFacilityID, plantCompID, componentID, plantCompType, locationDescription, plantCompDescription
	NI

	‘portal’
/sdp_Portal.csv
	portalID, locationID, openTime, closeTime, agencyID, accessDirectionCode, effectiveDate, endDate
	portalID, locationID, openTime, closeTime, agencyID, accessDirectionCode

	‘ptEventType’
/sdp_PtEventType.csv
	patternID, routeID, seqNo, ptEventType
	NI

	‘relativeLocation’
/sdp_RelLocation.csv
	locationID, onStreet, atStreet, distanceFromIntersection, units, placementRelIntersection, busPositionBay, alongLocation, isOffStreet
	locationID, onStreet, atStreet, distanceFromIntersection, placementRelIntersection, busPositionBay, alongLocation, isOffStreet
[note: use “units” from agency.ini file]

	‘route’
/sdp_Route.csv
	routeID, routeName, mode, publicRouteName, publicRouteNumber, routeDescription, adaCompliance, routeBeginDate, routeEndDate, effectiveDate, endDate
	mode, publicRouteName, publicRouteNumber, routeDescription, routeBeginDate, routeEndDate

	‘rtDirection’
/sdp_RouteDir.csv
	routeID, routeDirection, routeDirectionDescription, publicRouteDirection
	routeID, routeDirection, routeDirectionDescription, publicRouteDirection

	‘routeGroup’

/sdp_RouteGrouping.csv
	routeGroupingID, routeName, routeDescription, routeGroupingCode, effectiveDate, endDate
	routeGroupingID, routeName, routeDescription, routeGroupingCode

	‘rtDepotVersion’

/sdp_RtDepotVersion.csv
	revisionNumber, routeDepotVersion, routeID, depotID, dayType, activationDate, deactivationDate, effectiveDate, endDate
	revisionNumber, routeDepotVersion, routeID, depotID, dayType, activationDate, deactivationDate

	‘rtGroupPattern’

/sdp_RtGroupingPattern.csv
	routeGroupingID, patternID, routeID
	NI

	‘rtGroupTrip’

/sdp_RtGroupingTrip.csv
	routeGroupingID, tripID, routeID
	NI

	‘revision’
/sdp_SchedRevision.csv
	scheduleVersionID, revisionNumber, activationDate, deactivationDate, placementDate, scheduleVersionType, history

	scheduleVersionID, revisionNumber, activationDate, deactivationDate, placementDate, scheduleVersionType, history
[may add organizationID to last csv position if applicable]

	‘calendar’

/sdp_ScheduleCalendarDate.csv
	calendarDate, dayType, placementDate, activationDate, deactivationDate, routeDepotVersion, revisionNo, scheduleVersionID
	NI

	‘schedVersion’
/sdp_SchedVersion.csv
	scheduleVersionID, scheduleVersionDescription, pickNo, activationDate, deactivationDate, placementDate
	(implemented through sdp_process.ini file)

	‘status’

/sdp_Status.csv
	transitfacilityID, plantCompID, revisionNo, activationDate, deactivationDate, creationDate, modificationDate, placementDate, statusTypeCode, history
	NI

	‘stopAdd’

/sdp_StopAddress.csv
	stopID, addressID, addressSegID, recordDate, addressNumber, directionPrefix, typePrefix, streetName, typeSuffix, directionSuffix, completeName, unitType, unitDesignation, secondLine, postalCommunity, postalState, postalCode, status
	NI

	‘stopTrack’

/sdp_StopTrackAssoc.csv
	stopID, trackNo, alongLocation
	NI

	‘timepoint’

/sdp_Timepoint.csv
	timepointID, location, publicTimepointName, effectiveDate, endDate
	timepointID, location, publicTimepointName

	‘track’

/sdp_Track.csv
	trackNo, trackName, trackDesc, tranPathID, effectiveDate, endDate
	trackNo, trackName, trackDesc, tranPathID

	‘transferCluster’

/sdp_TransferCluster.csv
	transferClusterName, locationID, timeBegin, timeEnd, effectiveDate, endDate
	transferClusterName, locationID, timeBegin, timeEnd
[does not currently include clusterLocations or connectionSeg]

	‘facility’

/sdp_TransitFacility.csv
	transitFacilityID, locationID, facilityName, facilityType, facilityDescription, owner, isPartOf, partOf, effectiveDate, endDate
	transitFacilityID, locationID, facilityName, facilityType, facilityDescription, owner, isPartOf, partOf

	‘stop’
/sdp_TransitStop.csv
	stopID, locationID, stopOwner, alongLocation, heading, length, units, stopType, publicStopName, publicStopNumber, adaCompliance, effectiveDate, endDate
	stopOwner, alongLocation, heading, length, units, stopType, publicStopName, publicStopNumber, adaCompliance
[note:  use ‘units’ from agency.ini file]

	‘trip’
/sdp_Trip.csv
	tripID, routeID, patternID, dayType, tripName, tripType, timeBegin, timeEnd, locationBegin, locationEnd
	tripID, routeID, patternID, dayType, tripName, tripType, timeBegin, timeEnd, locationBegin, locationEnd

	‘tripEventType’ 
/sdp_TripEventType.csv
	tripID, routeID, tripTime, seqNo, timeEventType
	NI -- (alternative)

	‘tripTime’ 

/sdp_TripTime.csv
	routeID, tripID, tripTime, timeType, locationID, platformNo, seqNo
	NI -- (alternative)

	‘tripTimes’
/sdp_TripTimes.csv
	routeID, tripID, tripTime, tripEventType, timeType, locationID, platformNo, seqNo
	routeID, tripID, tripTime, timeType, locationID, platformNo, seqNo


7 Appendix C:  Software Module Descriptions

	Module Name & Attributes
	 
	 

	SDP Csv2Xml - SDP Integrity Checks & CSV to XML Conversion
	 
	 

	Check_SDPcsv.php
	
	 

	  Description
	Performs referential integrity checks of primary keys in parent and child relation csv files.
	 

	  Startup Parameters
	iniFile: .ini file containing list of csv files to check
	e.g., sdp_files_stif.bx0001.ini

	 
	errFile: name of file to write errors to.
	e.g., sdp_stif.bx0001_error_log.txt

	  Program Language and Version
	PHP v5.0.2
	 

	 
	
	 

	  Inputs/Outputs
	Input Files
	Output Files

	 
	sdp_patternEventList.csv
	SDP_LIB_Error_log.txt

	 
	sdp_pattern.csv
	 

	 
	sdp_direction.csv
	 

	 
	sdp_tripsTimes.csv
	 

	 
	sdp_trips.csv
	 

	 
	sdp_location.csv
	 

	 
	sdp_timepoint.csv
	 

	 
	sdp_stop.csv
	 

	 
	sdp_relativeLocation.csv
	 

	 
	sdp_route.csv
	 

	 
	sdp_agency.csv
	 

	 
	sdp_scheduleVersion.csv
	 

	 
	sdp_scheduleRevision.csv
	 

	 
	sdp_rtDepotVersion.csv
	 

	 
	sdp_direction.csv
	 

	 
	sdp_direction_filter.csv
	 

	 
	sdp_rtDirection.csv
	 

	
	
	

	
	
	

	 
	
	 

	Main_sdp_csv_to_xml.php
	
	 

	  Description
	Converts a set of SDP csv files to a single XML file.
	 

	  Startup Parameters
	iniFile: .ini file containing list of csv files to use in conversion.
	e.g., sdp_files_stif.bx0001.ini

	  Program Language and Version
	PHP v5.0.2
	 

	 
	
	 

	  Inputs/Outputs
	Input Files
	Output Files

	 
	sdp_patternEventList.csv
	sdp_LIBus-V-208.xml

	 
	sdp_pattern.csv
	sdp_pattern.xml

	 
	sdp_direction.csv
	 

	 
	sdp_tripsTimes.csv
	 

	 
	sdp_trips.csv
	 

	 
	sdp_location.csv
	 

	 
	sdp_timepoint.csv
	 

	 
	sdp_stop.csv
	 

	 
	sdp_relativeLocation.csv
	 

	 
	sdp_route.csv
	 

	 
	sdp_agency.csv
	 

	 
	sdp_scheduleVersion.csv
	 

	 
	sdp_scheduleRevision.csv
	 

	 
	sdp_rtDepotVersion.csv
	 

	 
	sdp_direction.csv
	 

	 
	sdp_direction_filter.csv
	 

	 
	sdp_rtDirection.csv
	 


File:  sdp_process.ini


Example: Long Island Bus





; filename


sdpName = SDP100


schemaName = c:/SDP/schema/SDP_XML_Schema_v6.xsd





;agencyConfig


agency = libus.ini





;attributes


scheduleVersionID = 107


scheduleVersionDescription =


pickNo = 107


activationDate = 2007-01-07


deactivationDate = 9999-12-31


placementDate = 2006-12-28





File:  <agencyName>.ini


Example:  Long Island Bus





; agency


effectiveDate = 2007-01-01


endDate = 2007-05-29


agencyID = 200


agencyAcronym = LIBus


agencyName = Long Island Bus


webAddress = http://www.mta.nyc.ny.us/libus/routes/routes.htm





;data source


dir = c:/sdp/LIBus/


agency=sdp_agency.csv


location=sdp_location.csv


pattern=sdp_pattern.csv


eventList=sdp_patternEventList.csv


route=sdp_route.csv


rtDepotVersion=sdp_rtDepotVersion.csv


rtDirection=sdp_rtDirection.csv


revision=sdp_scheduleRevision.csv


scheduleVersion=sdp_scheduleVersion.csv


trip=sdp_trips.csv


tripTimes=sdp_tripTimes.csv


tripTimeEvent = sdp_TimeEventType.csv


note=sdp_note.csv


noteTripAssoc = sdp_noteTripAssoc.csv


noteTimeAssoc = sdp_noteTimeAssoc.csv


relativeLocation= sdp_relativeLocation.csv















































PAGE  
SDP_Application_UserManual_Csv2Xml_V5_0


