
Part 3 – SDP Programmer’s Guide 30 June 2008

4 Using the SDP XML Schema for XML Document
Validation

4.1 Introduction
The Transit Schedule Data Exchange Architecture (TSDEA) project describes the
exchange requirements for schedule and related data. These data requirements are
incorporated into Schedule Data Profile (SDP) reference data model and implemented
into the SDP XML Schema.

This tutorial provides a brief overview of SDP XML Schema elements, and then
describes two applications that use the SDP XML Schema to validate XML documents.
A thorough treatment of the XML schema implementation and conceptual data reference
model is contained in Chapter 2 of SDP Guidance Documentation Part 2: User
Requirements.

One of the advantages of XML is the relative ease of verification of conformance with an
XML schema specification. Furthermore, software tools that are easy to use are readily
available. Two applications that validate XML documents are discussed in this chapter.
Finally, XML, which is written in ASCII, is portable across system platforms.

One disadvantage of using XML documents is the relative large size of the document,
routinely ranging between 5 to 15 megabytes in size, based on a representative sample of
SDP XML documents.

References:

SDP Guidance Documentation Part 2: User Requirements Version 1.0, June 2008

The intended audience f this manual includes:
• System developers and data modelers interested in creating valid SDP XML data;

and
• System managers responsible for setting up the run-time environment for SDP

applications

4.2 Structure of the SDP XML Schema
The SDP XML Schema is comprised of four files. These are listed below:

• SDP_XML_Schema_v1_0.xsd: This is the base schema, which imports the
SDP_Common and SDP_Domain schemas. It defines the structure of the SDP at
the highest level. The SDP100 root element contains the following:

o AgencyRegistration
o Service
o TransitNetwork
o TransitGazatteer
o TransitFacilities

SDPG-Part3-Ch_4_v1_0 1

Part 3 – SDP Programmer’s Guide 30 June 2008

• SDP_common_v1_0.xsd – Include a definition of complex elements included by
the highest level elements of the SDP.

• SDP_domain_v1_0.xsd – Includes a definition of identifiers and code
enumerations used in the SDP.

• GML_geometry.xsd - Contains definitions of the Geography Markup Language
(GML) used in the SDP.

4.3 Structure of the Schedule Calendar Date (SCD) XML Schema
A second schema that is part of the demonstration project is the Schedule Calendar Date
schema, which is made up of two files. These are listed below:

• SDP_Schedule_Calendar_Date_v1.xsd: This is the base schema, which imports
the SDP_domain_scd schema. It defines the structure of the Calendar and
Schedule_Calendar_Date. The Calendar root is comprised of
Schedule_Calendar_Date elements.

• SDP_domain_scd_V1_0.xsd – Includes a definition of identifiers and code
enumerations used in the SCD.

4.4 Elements of the XML Schema
The SDP Reference Data Model is an implementation neutral representation of the static
design that fulfills the SDP user requirements. The SDP data model describes the static
data structure (data relationships and valid value rules) for the information used in SDP
applications. The SDP data model specifies the following:

• Sequence and order of data
• Multiplicity, or number of times, a data element can be represented
• Defines re-usable types (for example, longitude and latitude are used together, so

a re-usable point type may be defined)
• Specifies mandatory (1 of more required) and optional (0 or more required) data

elements
• Specifies data value ranges and other constraints (for example, only the floating

point numbers -90.000000 through 90.000000 may be used to define a latitude
value, only the following valid text codes may be used to describe a dayType:
“weekday”, “mon”, “tue”, …).

• Key References

4.5 Validating XML Documents Using the XML Schema
The SDP demonstration project used the Altova XMLSpy software and a Microsoft
Windows Scripting Host application developed as part of the demonstration project to
validate both the XML schemas and XML documents. How to use these two applications
to validate XML documents are the topics of Section 4.6 and Section 4.7 below.

4.6 Using Altova XMLSpy
Figure 1 on the following page shows XMLSpy after startup of the sdp.spp, an XMLSpy
project file. The XMLSpy project file contains a list of schema files and XML
documents. A portion of the sdp_MNR_Base_April2008.xml file is shown in the center.

SDPG-Part3-Ch_4_v1_0 2

Part 3 – SDP Programmer’s Guide 30 June 2008

SDPG-Part3-Ch_4_v1_0 3

At the bottom of the figure, and part of the XMLSpy application, is a panel containing a
Validation Report that indicates that the sdp_MNR_Base_April2008.xml document is
valid. This means that the XML document conforms to all the schema rules including:

• Sequence and order of elements
• All mandatory elements present
• All data content within the value constraints

If we change one of the data values to an incorrect value, for example the effectiveDate
attribute of the <Agency> element to 2008-13-01, and run the validation, the XMLSpy
application will provide a description of the error in the Validation Report panel at
bottom, highlight the location of the error in the document, and print the xPath location of
the error found. This is shown in Figure 2.

Part 3 – SDP Programmer’s Guide 30 June 2008

XML
Documents

XML
Schema

Validation
Report

Validate
Document Button

Figure 1: XMLSpy SDP Project File at Startup

SDPG-Part3-Ch_4_v1_0 4

Part 3 – SDP Programmer’s Guide 30 June 2008

SDPG-Part3-Ch_4_v1_0 5

Figure 2: XMLSpy Showing Validation Errors

Validation
Error Report

Part 3 – SDP Programmer’s Guide 30 June 2008

4.7 Microsoft MSXML2 Windows Scripting Host Application

4.7.1 Software Installation
A sample application, msxsd, based on the MSXML2, an XML processor dynamic link
library (DLL) that comes with the Microsoft Internet Explorer application is included on
the application CD. The msxsd is a javascript application what accesses the MSXML2
DLL to validate an XML document against an XML Schema. The table below outlines
the operating system and version requirements for the database instance example.

System Version
SDP XML Schema Version 1_0
Windows Scripting
Host

5.6

Microsoft XML DLL 2
MS Windows Windows XP

Prerequisites: Microsoft Windows Scripting Host.

The attached CD contains a copy of the javascript, but not the Windows Scripting Host
software nor the MSXML2 DLL.

Appendix A of this chapter contains a copy of the javascript source and batch file to
execute the code under the Windows Scripting Host.

4.7.2 Application Execution
To start the msxsd application, navigate to the $SDP/SDP_schemaValidation/MNR
directory. Then, double-click on the file called validate_MNR_SdpXml.bat to start the
application.

If the file is valid, then the following prompt will display (see Figure 3):

Figure 3: MSXSD Application Showing a Validation Report

An example showing an error report message is in Figure 4:

SDPG-Part3-Ch_4_v1_0 6

Part 3 – SDP Programmer’s Guide 30 June 2008

Figure 4: MSXSD Application Showing Validation Error Report

SDPG-Part3-Ch_4_v1_0 7

Part 3 – SDP Programmer’s Guide 30 June 2008

SDPG-Part3-Ch_4_v1_0 8

5 Appendix A: MSXSD.JS Source and Batch Files
File: msxsd.js

Validate XML Document Against Schema

// validate parameters
if(WScript.Arguments.length != 3) {
 WScript.Echo("msxsd takes three arguments - datafile, namespace, schema - eg:");
 WScript.Echo('msxsd books.xml "" books.xsd');
} else {
 var cache = new ActiveXObject("Msxml2.XMLSchemaCache.4.0");
 cache.add(WScript.Arguments(1), WScript.Arguments(2));

 var xmldoc = new ActiveXObject("Msxml2.DOMDocument.4.0");
 xmldoc.async = false;
 xmldoc.preserveWhiteSpace = true;
 xmldoc.schemas = cache;
 xmldoc.load(WScript.Arguments(0));

 if(xmldoc.parseError.errorCode != 0)
 WScript.Echo("There is a problem: " + xmldoc.parseError.errorCode + " " +
xmldoc.parseError.reason);
 else
 WScript.Echo("no problems!");
}

File: validate_MNR_SdpXml.bat

msxsd SDP_MNR_Base_April2008.xml "http://www.tsdea.com/schema/SDP100"
../schema/SDP_XML_Schema_v1_0.xsd

	4 Using the SDP XML Schema for XML Document Validation
	4.1 Introduction
	4.2 Structure of the SDP XML Schema
	4.3 Structure of the Schedule Calendar Date (SCD) XML Schema
	4.4 Elements of the XML Schema
	4.5 Validating XML Documents Using the XML Schema
	4.6 Using Altova XMLSpy
	4.7 Microsoft MSXML2 Windows Scripting Host Application
	4.7.1 Software Installation
	4.7.2 Application Execution

	5 Appendix A: MSXSD.JS Source and Batch Files

