
Part 3 – SDP Programmer’s Manual 30 June 2008

3 Guidance on Building a Physical Database from the SDP

3.1 Conceptual Data Reference Model as a Framework for
Implementation Methods

As described in Guidance Part 2 volumes, the SDP Project used a system engineering approach
for developing user driven requirements for schedule and related data. A set of Use Cases on
Integrated Trip Planning, Dynamic Generation and Presentation of Public Timetables, and
Generation of Ad Hoc Scheduling were developed to identify the specific schedule data
requirements for these downstream applications. The effort wanted to ensure that the data
meaning and relationships were well defined. A Conceptual Data Reference Model (CDRM)
was developed to meet that need. The CDRM is meant to be used as a framework to
unambiguously describe the SDP data concepts and their relationship to each other. Different
technical methods may be used to physically represent and store schedule data. The three
methods include: logical data model, physical database, and XML Schema. The major objective
of the project was to implement the XML Schema and validate the requirements in one or more
downstream applications (related to the use cases).

The SDP logical and physical methods provide alternative approaches for the storing the data.
Different needs may exist for storing the data using a different method, yet ensuring that there is
a seamless, automated way to transfer the data from format to format. In fact, the Data Mapper
(csv2xml) application, described in Chapter 5 of this document, uses a comma separated value
(csv) representation which may be described as a logical model of the CDRM to convert native
data using the interim format to an XML document. A physical database is a more efficient way
to store data sets of different versions and multiple agencies together then file server containing
multiple SDP XML Documents.

3.2 Differences between the SDP CDRM and Implementation Methods
The SDP CDRM uses an entity-relationship (ER) method to represent real-world phenomena.
The model is driven by a set of requirements described by current, local practice and by best
practices advocated by the information technology and transit industries. The CDRM uses an
abstract ER diagram (ERD) modeling method to represent these real-world phenomena.
Although a similar notation is used to describe the Logical and Physical models, they do not
include the same information or serve the same purpose. Differences between the CDRM and
Logical, CDRM and Physical and CDRM and XML Schema models are described below.

Difference between a CDRM and SDP Logical Entity Relationship Model: A CDRM
shows the relationship between entities, but does not carry related keys to related entities.
For example, in a system that supports more than one schedule version per agency, the
schedule version identifier must be included in every entity in the logical model. A logical
model (expressed as an ERD) shows these primary and foreign keys, and thus describes key
storage requirements related to the data set. The CDRM makes no assumptions about how a
model is applied; rather, it describes real-world relationships.

SDPG_Part3_Ch_3_v_1 1

Part 3 – SDP Programmer’s Manual 30 June 2008

Difference between a CDRM and SDP Physical Implementation: Similar to the
relationship between a conceptual and logical model, the physical implementation supports
primary and foreign keys, the procedures that validate these relationships, and specific
formats and syntax related to each data type described in the model. Specifically, these rules
and procedures are defined for a specific database management system such as Oracle 9i, MS
Access 2003, etc.

Difference between a CDRM and SDP XML Schema Implementation: The SDP XML
Schema’s primary purpose is to facilitate the sharing of data across different information
systems, particularly via the Internet. The SDP XML Schema uses the CDRM to describe
schedule and related data concepts and preserve the relationship requirements among data
concepts for one schedule version and for a single transit operator. A set of rules were used
to migrate the data concepts from the CDRM to the XML Schema implementation.

3.3 An Example of Migrating the CDRM to a Logical, Physical and
XML Schema Representation

As described above, there are rules for implementing the CDRM from the conceptual framework
to its logical, physical and XML schema formats. The following sections show how the CDRM
for the same data concept, Schedule Calendar Date, is transformed to a logical, physical, and
XML Schema model. Each model depicted in Figures 1 through 4, is summarized in the list
below:

• Conceptual Data Reference Model—Figure 1
- Note the CDRM, Logical and Physical models are all represented using ERD notation.

• Logical ERD Model—Error! Reference source not found. and Figure 3
- Note the key identifiers become primary keys (pk), and related entities include related

or foreign keys (fk);

• Physical Model—Figure 4. Note the attributes are specified with specific data types that
reference the specific database management system specifications.

3.3.1 Example of the Conceptual Data Reference Model
The CDRM is expressed as an Entity Relationship Diagram (ERD). Figure 1 shows an example
for the basic representation of the schedule calendar date concept.

SDPG_Part3_Ch_3_v_1 2

Part 3 – SDP Programmer’s Manual 30 June 2008

Relationship_47

53

4
defines

is defined by

Calendar_Date

date
dayOfWeek
holiday

<pi> <M>
<M>

Route_Depot_Version
(SDP)

routeDepotVersionID
activationDate
deactivationDate

<pi> <M>
<M>
<M>

<<data type>>
Day_Type

(SDP)

dayTypeDescription
agencyID
timeBegin
timeEnd
dayType <pi>

<M>

<M>

Schedule_Calendar_Date
(SDP)

calendarDate
dayType
placementDate
activationDate
deactivationDate

<pi>
<pi>

<M>
<M>
<M>
<M>
<M>

Figure 1: Conceptual ER Model of Schedule Calendar Date Concept

The following paragraph describes the requirements of Figure 1:

“Transit service is scheduled for each day of operation. Service components may be
scheduled to operate on different dates depending on a number of factors. These factors may
be schedule based; for example, special trips are designated when there is an event at Shea
Stadium or service to evacuate workers from the city during a snow storm. The Schedule
Calendar Date associates the relevant schedule components (designated by the Route Depot
Version) and an index related to the appropriate trips (designated by the day type) into a table
which is used as a reference.

“A Schedule Calendar Date is created for each set of schedule version components and the
trips that operate on the specific dayType. In some cases, the schedule version components
are scheduled for only part of a day, for example, the schedule components vary when the
Mets play games that begin at 5 p.m. versus at 7 p.m.” [from SDP Functional Requirements,
p. 102]

3.3.2 Example of the Logical Entity-Relationship Representation
The logical model is driven by application requirements related to how the data are stored and
accessed. In the example illustrated in Error! Reference source not found., the Schedule
Calendar Date entity inherits related keys designating the schedule version when more than one
schedule version is present. When an organization changes its schedule mid-version, the entity is
required to include a revision number, and when a transit agency issues their schedule by route
or by route and depot, the route-depot version is also included in the entity. When this model is
extended to a regional repository, each entity must designate the authority that issued the data, as
such, the functional entities Route_Depot_Version, Schedule_Calendar_Date and Day_Type

SDPG_Part3_Ch_3_v_1 3

Part 3 – SDP Programmer’s Manual 30 June 2008

include the agency identifier (agencyID). The actual implementation of the conceptual to logical
model may be seen in Figure 3.

Relationship_47 53

4defines
is defined by

Calendar_Date

date
dayOfWeek
holiday

<pi> <M>
<M>

Route_Depot_Version
(SDP)

routeDepotVersionID
activationDate
deactivationDate

<pi> <M>
<M>
<M>

<<data type>>
Day_Type

(SDP)

dayTypeDescription
timeBegin
timeEnd
dayType <pi>

<M>

<M>

Schedule_Calendar_Date
(SDP)

calendarDate
dayType
placementDate
activationDate
deactivationDate

<pi>
<pi>

<M>
<M>
<M>
<M>
<M>

When storing multiple schedule versions, table
will include foreign keys: scheduleVersionID,
revisionNo and/or routeDepotVersionID, too. Add
foreign key agencyID to all tables when
integrating with multiple agencies.

Use to distinguish different schedule
or route/depot versions. When
multiple agencies and versions are
present, the table will include foreign
keys: scheduleVersionID, revisionNo
and agencyID.

Figure 2: Migrating from Conceptual to Logical Model

SDPG_Part3_Ch_3_v_1 4

Part 3 – SDP Programmer’s Manual 30 June 2008

Figure 3: Logical Model of Schedule Calendar Date Concept

3.3.3 Example of the Physical Database Implementation
The physical model is similar to the logical model except the data types are defined by the
database management system. The physical database also supports procedures that enforce
referential integrity triggers (primary and foreign keys) when data are added, changed or deleted
from the database. A generic physical model for the Schedule Calendar Date concept is
illustrated in Figure 4. As is shown in the figure, this is similar to the logical model shown in
Figure 3 except for defining specific data types and showing the procedures. For organizations
with specific database management systems, the logical and physical representations are
somewhat redundant since logical and physical models will use the same data type definitions.

SDPG_Part3_Ch_3_v_1 5

Part 3 – SDP Programmer’s Manual 30 June 2008

ScheduleVersion

PK scheduleVersionID CHAR(10)

scheduleVersionDescription CHAR(10)
pickNo CHAR(10)
activationDate CHAR(10)
deactivationDate CHAR(10)
placementDate CHAR(10)

ScheduleRevision

PK,FK1 scheduleVersionID CHAR(10)
PK revisionNumber CHAR(10)

activationDate CHAR(10)
deactivationDate CHAR(10)
placementDate CHAR(10)
scheduleVersionType CHAR(10)
history CHAR(10)

RouteDepotVersion

PK,FK1 revisionNumber CHAR(10)
PK,FK1 scheduleVersionID CHAR(10)
PK routeDepotVersion CHAR(10)

routeID CHAR(10)
depotID CHAR(10)
activationDate CHAR(10)
deactivationDate CHAR(10)

CalendarDate

PK date DATETIME

dayOfWeek CHAR(10)
holiday TEXT(10)

Schedule_Calendar_Date

PK,FK1 date DATETIME
PK,FK2 dayType CHAR(10)

placementDate DATETIME
activationDate DATETIME
deactivationDate DATETIME

FK3 revisionNumber CHAR(10)
FK3 scheduleVersionID CHAR(10)
FK3 routeDepotVersion CHAR(10)

Day_Type

PK dayType CHAR(10)

dayTypeDescription TEXT(10)
timeBegin DATETIME
timeEnd DATETIME

Figure 4: Physical Model of the Schedule Calendar Date

SDPG_Part3_Ch_3_v_1 6

Part 3 – SDP Programmer’s Manual 30 June 2008

3.4 Database Scripts and Referential Integrity Issues
Using specialized data modeling software, the CDRM may be used to generate a physical
database loading script. The physical database should be optimized for its use. Because primary
and foreign keys are not specifically identified in the conceptual model, tables are not optimized
for queries, and multiple agencies or versions are not assumed in the CDRM, the script will need
to be revised and augmented. For inquiries on obtaining a script to generate a SDP physical
database, please contact: tsdea@consystec.com.

3.4.1 Referential Integrity Issues
Referential integrity in a database ensures that tables ensures the identity and relationships
among data concepts are unique, consistent and unambiguous. The utility to ensure these
characteristics are the assignment of primary and foreign keys in the physical database
management system. Although the CDRM does not use the terms primary and foreign keys, it
classifies one or more identifying keys (primary keys) for each entity (which becomes a table in
the physical database). The model also inserts related identifying keys in some entities and in
some cases there are non-identifying keys in an entity. The CDRM entity, their identifying keys,
related identifying keys and non-identifying keys are listed in Table 1: CDRM Entity with its
Identifying and Non-Identifying Keys.

Table 1: CDRM Entity with its Identifying and Non-Identifying Keys
IDENTIFYING KEY

NAME
IDENTIFYING
RELATED KEY

NAME(S)

OTHER
RELATED KEYS

ENTITY

agencyID effectiveDate
endDate

Agency

amenityID locationID
effectiveDate
endDate

Amenity

amenityCode Amenity_Type
blockID scheduleVersionID

effectiveDate
endDate

Block

blockTime blockID scheduleVersionID Block_Event_Time
seqNo tripID

routeID
scheduleVersionID Block_Trip_Sequence

date Calendar_Date
connectionID From: locationID

To: locationID
effectiveDate
endDate

Connection_Seg

dayType dateTimeBegin
dateTimeEnd
scheduleVersionID

Day_Type

depotID transitFacilityID Depot

SDPG_Part3_Ch_3_v_1 7

Part 3 – SDP Programmer’s Manual 30 June 2008

IDENTIFYING KEY
NAME

IDENTIFYING
RELATED KEY

NAME(S)

OTHER
RELATED KEYS

ENTITY

locationID
effectiveDate
endDate

connectionNum

To: tripTime,
tripID, routeID
From: tripTime,
tripID, routeID

scheduleVersionID Event_Connection

facPCID transitFacilityID Facility_Plant_Component
locationID featureType_cd

effectiveDate
endDate

Location

mode Mode
noteAssociationID noteID

tripID
tripTime
scheduleVersionID
effectiveDate
endDate

Note_Association

noteID scheduleVersionID
effectiveDate
endDate

Note_Entry

organizationUnitID agencyID
effectiveDate
endDate

Organizational_Unit

passAccessID locationID
effectiveDate
endDate

Passenger_Access_Compone
nt

passengerAccessCod
e

 Passenger_Access_Type

patternID routeID routeDirection
scheduleVersionID
effectiveDate
endDate

Pattern

plantCompID componentID
(amenityID,
transitFacilityID,
stopID, trackID,
passAccesID)
featureType_cd

effectiveDate
endDate

Plant_Component

 trackNo
stopID

 Platform_Track

portalID locationID
effectiveDate
endDate

Portal

SDPG_Part3_Ch_3_v_1 8

Part 3 – SDP Programmer’s Manual 30 June 2008

IDENTIFYING KEY
NAME

IDENTIFYING
RELATED KEY

NAME(S)

OTHER
RELATED KEYS

ENTITY

relativeLocationID locationID Relative_Location
routeID routeBeginDate

routeEndDate
mode
scheduleVersionID
effectiveDate
endDate

Route

routeDepotVersionID revisionNo
scheduleVersionI
D

dayType
effectiveDate
endDate

Route_Depot_Version

routeDirection routeID scheduleVersionID Route_Direction
routeGroupingID scheduleVersionID

effectiveDate
endDate

Route_Grouping

routeGroupingCode Route_Grouping_Type
calendarDate Schedule_Calendar_Date
revisionNumber scheduleVersionI

D
 Schedule_Revision

scheduleVersionID activationDate
deactivationDate

agencyID Schedule_Version

scheduleVersionType Schedule_Version_Type
identifier locationID Service_Area
revisionNo plantCompID activationDate

deactivationDate
placementDate
modificationDate
creationDate

Status

statusTypeCode Status_Code_Type
timepointID locationID

scheduleVersionID
effectiveDate
endDate

Timepoint

tth routeID
routeDirection

scheduleVersionID Timetable_Header

trackNo effectiveDate
endDate

Track

transferClusterName Set of locationID
effectiveDate
endDate

Transfer_Cluster

transitFacilityID locationID
effectiveDate
endDate

Transit_Facility

tranPathID locationID Ordered list of
locationID

Transit_Path

SDPG_Part3_Ch_3_v_1 9

Part 3 – SDP Programmer’s Manual 30 June 2008

IDENTIFYING KEY
NAME

IDENTIFYING
RELATED KEY

NAME(S)

OTHER
RELATED KEYS

ENTITY

effectiveDate
endDate

seqNo locationID
patternID

 Transit_Path_Event

seqNo locationID (first &
last)
patternID

Ordered list of
locationID

Transit_Point_Event

stopID locationID
effectiveDate
endDate

Transit_Stop

tripID routeID
dayType

scheduleVersionID
effectiveDate
endDate

Trip

tripEventTypeCode Trip_Event_Type
tripTime tripID

routeID
scheduleVersionID Trip_Time

3.4.2 Temporal Integrity Issues
Transit schedule and related data are composed of sets of data with differing, overlapping and
temporary data versions and revisions in different states. To that end, temporal data principles
are applied to the major entities using two fields for time: effectiveDate and endDate. The
principles for preserving the history while enabling so-called redundant data to remain in the
database necessitate including the two dates as primary keys. In some cases, like
ScheduleVersion, Route, Day Type, Plant Component Status, additional temporal keys are
included (e.g., activationDate/deactivationDate, routeBeginDate/routeEndDate) in order to allow
for temporary data with similar identifying keys to remain in the

For example, TriMet implemented this approach in their database. The description of their use
of dates is described in a passage from the FTA Best Practices for Using Geographic Data in
Transit: A Location Referencing Guidebook:

“…The Location Table cannot lose the old record keyed to the Location ID; therefore, a
method to manage the updated records must be implemented.

“Adding one attribute to the unique identifier (primary key) of the Location Table, called
location_end_date, can achieve this consistency. When a location ID is first introduced,
the location_begin_date is set to the date of first use (see Example Table #1 below: 5-1-
03 is the new date). The location_end_date is set to a date in the far-off future (in
Example Table #1, location_end_date is 12-31-9999). If a change is made to one of the
Location Table attributes, for example, if the Public_Description is changed, the
location_end_date for the existing row is set to the date of closure (in Example Table #2,
the date is now 6-30-03). In addition, a new row (or record) may be introduced for the

SDPG_Part3_Ch_3_v_1 10

Part 3 – SDP Programmer’s Manual 30 June 2008

Location ID. On the new record, the location_begin_date value is set for the original
location_end_date plus one day later (7-01-03, and the location_end_date is set to a date
in the far-off future (12-31-9999). Using this approach, a consistent set of values is
provided for the Location ID with the referring transit feature matching the Location ID,
and inclusive of location_begin_date and location_end_date.

“Example of the Public_Description changing:

Example Table #1
Loc_ID location_begin_date location_end_date Public_Description
5 5-1-03 12-31-9999 Union & 5th

Example Table #2
Loc_ID location_begin_date location_end_date Public_Description
5 5-1-03 6-30-03 Union & 5th
5 7-1-03 12-31-9999 MLK& 5th

“In this manner, historical data can be matched accurately. Alternatively, if the location
changes (e.g., nearside to farside), a new ID (and new record) is created and the old ID is
retired.”
[from FTA-NJ-26-7044-2003.1, Best Practices for Using Geographic Data in Transit: A
Location Referencing Guidebook , April 2005. pf., 79. free download from
http://www.fta.dot.gov/documents/LRG_FinalPublication.pdf]

Many of the principles for managing temporal databases may be found in:

Richard T. Snodgrass, Developing Time-Oriented Database Applications in SQL. Morgan
Kaufmann Publishers, San Francisco CA, 2000. – free download at
http://www.cs.arizona.edu/people/rts/tdbbook.pdf

3.5 Implementation of a SDP Database in MS Access

The SDP demonstration contains a sample Microsoft Access database instance of the SDP
(Sample SDP database). The referential integrity procedures and triggers are not installed in this
database. The database executes a macro at startup that reads a set of SDP csv file format files at
run-time and loads the data into the database. The user may then view table data and create new
queries to examine the SDP data and structure.

3.5.1 Software Installation
The Sample SDP database contains a startup macro application written in Visual Basic for
Access that runs under the Windows Operating System. Table 2 outlines the operating system
and version requirements for the database instance example.

SDPG_Part3_Ch_3_v_1 11

http://www.fta.dot.gov/documents/LRG_FinalPublication.pdf
http://www.fta.dot.gov/documents/LRG_FinalPublication.pdf
http://www.cs.arizona.edu/people/rts/tdbbook.pdf

Part 3 – SDP Programmer’s Manual 30 June 2008

Table 2: SDP Access Database Operating System and Version Requirements
System Version

SDP XML Schema Version 1_0
Microsoft Access 2003 SP2
MS Windows Windows XP

Prerequisites: Microsoft Windows and Access 2003 Database.

The TSDEA web site (http://www.consystec.com/tsdea/rstwg/docs.html) contains a copy of the
Microsoft Access 2003 database content file, but not the database software itself.

3.5.2 Data Files

3.5.2.1 Set Up the SDP Directory Structure
The figure below shows where to install the SDP instance database, called sdp_db.mdb. You
may choose any SDP root path (directory). We have labeled this SDP root as $SDP in the figure
below and use this label in the remainder the user’s manual.

If you are copying files from the CD, the directory structure is set up as described in Figure 5.

SDP Database Application Example Directory Structure

$SDP

SDP CSV files

$SDP is a directory of your choosing.

Application
Software
Module

Application Input Files

SDP_data

RTIF STIF MNR LIRR MTABus CoachUSALIBussdp_db.mdb

Figure 5: SDP Database Application Directory Structure

The Sample SDP Database Instance is located in the SDP_data sub-directory of the $SDP
directory. We will use a forward-slash notation to indicate sub-directory relationships of
directory tree, for example, $SDP/SDP_processing.

SDP CSV data files, which can be imported to the database at run-time are located in an agency-
specific directory of $SDP/SDP_data/, for example, $SDP/SDP_data/LIBus for Long Island Bus,
and $SDP/SDP_data/RTIF for New York City Transit Rail files.

3.5.2.2 List of SDP CSV Data Input Files
The Sample SDP database reads CSV data from an agency-specific sub-directory of
$SDP/SDP_data/”agency”. The list of files read depends on the agency and whether the agency

SDPG_Part3_Ch_3_v_1 12

Part 3 – SDP Programmer’s Manual 30 June 2008

provides bus, commuter rail, or subway, etc. service. The list of files, using the LIBus as an
example, is listed below:

• sdp_agency.csv
• sdp_direction.csv
• sdp_location.csv
• sdp_Note.csv
• sdp_NoteTimeAssoc.csv
• sdp_NoteTripAssoc.csv
• sdp_pattern.csv
• sdp_patternEventList.csv
• sdp_relativeLocation.csv
• sdp_route.csv
• sdp_rtDepotVersion.csv
• sdp_RtDirection.csv
• sdp_scheduleRevision.csv
• sdp_scheduleVersion.csv
• sdp_stop.csv
• sdp_TimeEventType.csv
• sdp_timepoint.csv
• sdp_trips.csv
• sdp_tripTimes.csv

3.5.2.3 List of SDP Tables
The output of the initialization macro is a series of tables with the same names as the csv files
imported.

3.5.3 Application Execution
AutoExec Macro Application Execution:

• AutoExec Macro: At startup the sdp_db.mdb database executes a software module that
prompts the user for a name of a sub-directory where SDP csv files are located: for
example, libus, rtif, stif, mnr, lirr, mtabus, etc.

An example of the prompt display is shown in Figure 6:

Figure 6: SDP Startup Macro Initialization Directory Prompt

Once the data files are loaded the application will display “Done!”.

SDPG_Part3_Ch_3_v_1 13

Part 3 – SDP Programmer’s Manual 30 June 2008

SDPG_Part3_Ch_3_v_1 14

To launch the MS Access database, navigate to the $SDP/SDP_data directory. If you are using a
graphical interface to navigate to the $SDP/SDP_data directory, then double-click on the file
called sdp_db.mdb to start the application.

After startup MS Access will contain a list of tables that correspond with the csv files imported.
This is shown in Figure 7:

Figure 7: SDP Startup Macro Initialization Directory Results

	3 Guidance on Building a Physical Database from the SDP
	3.1 Conceptual Data Reference Model as a Framework for Implementation Methods
	3.2 Differences between the SDP CDRM and Implementation Methods
	3.3 An Example of Migrating the CDRM to a Logical, Physical and XML Schema Representation
	3.3.1 Example of the Conceptual Data Reference Model
	3.3.2 Example of the Logical Entity-Relationship Representation
	3.3.3 Example of the Physical Database Implementation

	3.4 Database Scripts and Referential Integrity Issues
	3.4.1 Referential Integrity Issues
	3.4.2 Temporal Integrity Issues

	3.5 Implementation of a SDP Database in MS Access
	3.5.1 Software Installation
	3.5.2 Data Files
	3.5.2.1 Set Up the SDP Directory Structure
	3.5.2.2 List of SDP CSV Data Input Files
	3.5.2.3 List of SDP Tables

	3.5.3 Application Execution

